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Abstract—We model a simplified two-link robotic arm using inverse kine-
matics and inverse dynamics with the goal of following a given motion trajec-
tory. We utilize a simplified inverse kinematics solver and derive all necessary
equations starting from the Lagrangian. Lastly, we simulate the system using
forward dynamics.
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1. Introduction / Question

Can we calculate the torques necessary to drive a robotic manipulator
so that its end-effector follows a predetermined motion path? Then,
can we simulate the physical system after generating the torques to
verify it’s stability?

Understanding robotic motion and control systems is crucial for engi-
neers working with all manner of robotic systems in manufacturing,
bio-tech, military, etc. We chose to explain and model the equations
of motion/force applied at the end of a robotic manipulator for a
simple 2D, 2-link arm.

First, we want to understand and derive basic kinematics and
utilize standard energy laws in our calculations. To understand how
these interplay, Northwestern Robotics offers a series on YouTube
that provides a walk-through of modern control systems and their
relevant mathematics/physics derivations:

https://www.youtube.com/playlist?list=PLggLP4f-rq00TQamz2p
XjzPWpuxhVN_Vy

By having a strong understanding of the underlying physics, kine-
matics, peak loads, and control systems, engineers can create more
advancedmachinery and validate their designs beforemanufacturing.

2. Methodology / Model

In this project, we create a simulation of a robotic arm and program
it to follow an arbitrary motion path.

2.1. Description / Assumptions
We assume the masses are known, friction in the joints is negligible,
air drag is negligible, the joints are perfect motors (no torque curves),
and that the linkage mass is evenly distributed.

2.2. Development
1. First we solve for forward kinematics using homogeneous

transforms matrices: given a configuration of joint angles (𝜃𝑖)
and lengths (𝑙𝑖), we find the coordinate of the end-effector.

2. Then we derive inverse kinematics from the forward kinemat-
ics: given a target coordinate, findwhat joint angle configuration
places the end-effector there.

3. We thenderive thepotential andkinetic energy of the system
for use in the Lagrangian equation of motion.

4. We populate the Euler-Lagrange equation of work/force at
the end-effector, using the partial derivatives of the Lagrangian.

5. We use IK and create a time-step estimation of desired veloc-
ities and acceleration and input these into our ID model and
generate the torques.

6. Finally, we simulate using forward dynamics the behavior of
the robotic arm given only the torques over time and compare
the end-effector to the desired trajectory.

2.3. Joint-Frame Translation Matrices

2.3.1. Forward Kinematics

Forward kinematics is used to take the robot parameters (angles) and
produce a position and orientation of the end-effector. In our case,
we simplify the equation a bit since we consider the end effector as a
point instead of an end-effector with complex geometry.

To go from the fixed frame 𝐹 at the origin to the final frame𝑀3 which
represents the end-effector, we want to calculate

𝐹 → 𝑀1 → 𝑀2 → 𝑀3

Thus, we want to solve for the following homogeneous transforms:

𝐻 = 𝐹 → 𝑀1 → 𝑀2 → 𝑀3

= (𝐹 → 𝑀1)(𝑀1 → 𝑀2)(𝑀2 → 𝑀3)
= 𝐻1𝐻2𝐻3

Thus,𝐻 = 𝐹 → 𝑀3.

In the top left of the 3 × 3 homogeneous transform matrix, we place
the 2 × 2 rotation matrix and in the last column, we include the
displacement (within that frame):

⎡
⎢
⎢
⎣

cos 𝜃 −sin 𝜃 𝑑𝑖𝑠𝑝𝑥
sin 𝜃 cos 𝜃 𝑑𝑖𝑠𝑝𝑦
0 0 1

⎤
⎥
⎥
⎦

2.3.2. Forward Kinematics Example

Let us calculate the forward kinematics for the example shown:

Figure 1. Given the angles 𝜃1, 𝜃2, we find the position of the end-effector.

𝐻 = 𝐻1𝐻2𝐻3

=
⎡
⎢
⎣

cos(40°) − sin(40°) 0
sin(40°) cos(40°) 0

0 0 1

⎤
⎥
⎦

⎡
⎢
⎣

cos(−60°) − sin(−60°) 1
sin(−60°) cos(−60°) 0

0 0 1

⎤
⎥
⎦

⎡
⎢
⎣

1 0 1
0 1 0
0 0 1

⎤
⎥
⎦

=
⎡
⎢
⎣

0.7660 −0.6428 0
0.6428 0.7660 0
0 0 1

⎤
⎥
⎦

⎡
⎢
⎣

0.5 0.8660 1
−0.8660 0.5 0

0 0 1

⎤
⎥
⎦

⎡
⎢
⎣

1 0 1
0 1 0
0 0 1

⎤
⎥
⎦

=
⎡
⎢
⎣

0.9397 0.342 1.7057
−0.342 0.9397 0.3008

0 0 1

⎤
⎥
⎦

The top left 2 × 2matrix is the rotation of the end-effector:

⎡
⎢
⎣

0.9397 0.342 1.7057
−0.342 0.9397 0.3008

0 0 1

⎤
⎥
⎦
=
⎡
⎢
⎣

cos 𝜃 −sin 𝜃 𝑑𝑖𝑠𝑝𝑥
sin 𝜃 cos 𝜃 𝑑𝑖𝑠𝑝𝑦
0 0 1

⎤
⎥
⎦
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Since cos 𝜃 = 0.9397 and sin 𝜃 = −0.342, then:

𝜃 = tan−1 (−0.3420.9397 )

= tan−1(−0.364)
≈ −20°

The last column is the total displacement from the origin frame to the
end-effector and thus gives the end-effector’s position and rotation is:

(1.71, 0.30,−20°)

2.4. Inverse Kinematics (IK)

Calculating inverse kinematics is the process of calculating the inter-
mediate homogeneous transform matrices given𝐻:

𝐻 = 𝐻1𝐻2𝐻3

=
⎡
⎢
⎢
⎢
⎣

cos(𝜃1) − sin(𝜃1) 0

sin(𝜃1) cos(𝜃1) 0

0 0 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

cos(𝜃2) − sin(𝜃2) 1

sin(𝜃2) cos(𝜃2) 0

0 0 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1 0 1

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

cos(𝜃1) − sin(𝜃1) 0

sin(𝜃1) cos(𝜃1) 0

0 0 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

cos(𝜃2) − sin(𝜃2) cos(𝜃2) + 1

sin(𝜃2) cos(𝜃2) sin(𝜃2)

0 0 1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin 𝜃2 −
(
cos 𝜃1 sin 𝜃2 + sin 𝜃1 cos 𝜃2

)
cos 𝜃1(cos 𝜃2 + 1) − sin 𝜃1 sin 𝜃2

sin 𝜃1 cos 𝜃2 + cos 𝜃1 sin 𝜃2 cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin 𝜃2 sin 𝜃1(cos 𝜃2 + 1) + cos 𝜃1 sin 𝜃2
0 0 1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

cos(𝜃1 + 𝜃2) − sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2) + cos 𝜃1
sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2) sin(𝜃1 + 𝜃2) + sin 𝜃1

0 0 1

⎤
⎥
⎥
⎥
⎦

Let our desired end-effector pose be represented as the matrix :

𝐻 =
⎡
⎢
⎣

cos(𝜃𝑒𝑛𝑑) − sin(𝜃𝑒𝑛𝑑) 𝑥𝑒𝑛𝑑
sin(𝜃𝑒𝑛𝑑) cos(𝜃𝑒𝑛𝑑) 𝑦𝑒𝑛𝑑

0 0 1

⎤
⎥
⎦

We can then create a system of equations and solve for the angles
of the robotic arm. However, we’re going to simplify our pose by
disregarding orientation of end-effector and simply solving for the
displacement. Thus yielding the following system:

𝑥𝑒𝑛𝑑 = cos(𝜃1) + cos(𝜃1 + 𝜃2),
𝑦𝑒𝑛𝑑 = sin(𝜃1) + sin(𝜃1 + 𝜃2)

First, to simplify further algebra and decouple the variables, we in-
troduce the distance from the origin to the end-effector:

𝑟2 ∶= (𝑥𝑒𝑛𝑑)2 + (𝑦𝑒𝑛𝑑)2

= (cos(𝜃1) + cos(𝜃1 + 𝜃2))2 + (sin(𝜃1) + sin(𝜃1 + 𝜃2))2

= cos2(𝜃1) + cos2(𝜃1 + 𝜃2) + 2 cos(𝜃1) cos(𝜃1 + 𝜃2)

+ sin2(𝜃1) + sin2(𝜃1 + 𝜃2) + 2 sin(𝜃1) sin(𝜃1 + 𝜃2)

=
[
cos2(𝜃1) + sin2(𝜃1)

]
+
[
cos2(𝜃1 + 𝜃2) + sin2(𝜃1 + 𝜃2)

]

+ 2 cos(𝜃1) cos(𝜃1 + 𝜃2) + 2 sin(𝜃1) sin(𝜃1 + 𝜃2)
= 1 + 1 + 2

[
cos(𝜃1) cos(𝜃1 + 𝜃2) + sin(𝜃1) sin(𝜃1 + 𝜃2)

]

= 2 + 2 cos((𝜃1 + 𝜃2) − 𝜃1)(cos(𝐴 − 𝐵) = cos𝐴 cos𝐵 + sin𝐴 sin𝐵)
𝑟2 = 2 + 2 cos(𝜃2)

To solve for 𝜃2, we can now do:

𝑟2 = 2 + 2 cos(𝜃2)

cos(𝜃2) =
𝑟2 − 2
2

𝜃2 = ±arccos ( 𝑟
2 − 2
2 )

𝜃2 = ±arccos ( (𝑥𝑒𝑛𝑑)
2 + (𝑦𝑒𝑛𝑑)2 − 2

2 )

where the ± represents elbow up or elbow down configurations.

To solve for 𝜃1, we use the sum to product formula to derive:

𝑥𝑒𝑛𝑑 = cos(𝜃1) + cos(𝜃1 + 𝜃2)

= 2 ⋅ cos(𝜃1 +
𝜃2
2
) ⋅ cos( 𝜃2

2
)

𝑦𝑒𝑛𝑑 = sin(𝜃1) + sin(𝜃1 + 𝜃2)

= 2 ⋅ sin
(
𝜃1 +

𝜃2
2
) ⋅ cos( 𝜃2

2
)

We can then form the following since the cos( 𝜃2
2
) and 2 cancel:

tan(𝜃1 +
𝜃2
2
) = 𝑦𝑒𝑛𝑑

𝑥𝑒𝑛𝑑
𝜃1 +

𝜃2
2
= atan2(𝑦𝑒𝑛𝑑 , 𝑥𝑒𝑛𝑑)

𝜃1 = atan2(𝑦𝑒𝑛𝑑 , 𝑥𝑒𝑛𝑑) −
𝜃2
2

2.4.1. Inverse Kinematics Example

Recall forward kinematics example end-effector coordinate:

(1.71, 0.30)

Let us calculate the joint configurations for the end-effector to reach
this coordinate (disregarding end-effector angle for simplicity):

𝜃2 = ±arccos ( (𝑥𝑒𝑛𝑑)
2 + (𝑦𝑒𝑛𝑑)2 − 2

2 )

= ±arccos ( (1.71)
2 + (0.3)2 − 2

2 )

= ±arccos(0.50705)
≈ {−59.533, 59.533}

Let’s use the positive angle first:

𝜃1 = atan2(𝑦𝑒𝑛𝑑 , 𝑥𝑒𝑛𝑑) −
𝜃2
2

= atan2(0.3, 1.71) − 1.03904686
2

≈ 0.174 − 0.51952343
≈= −0.346 = −19.82°

then solve using the negative angle:

𝜃1 = atan2(𝑦𝑒𝑛𝑑 , 𝑥𝑒𝑛𝑑) −
𝜃2
2

= atan2(0.3, 1.71) − −1.03904686
2

≈ 0.174 + 0.51952343
≈= 0.69352343 = 39.74°

Thus, we obtained two valid configuration solutions, one that repre-
sents "elbow up" and the other for "elbow down":

Figure 2. Two solutions to the inverse kinematics problem.

2.4.2. Inverse Kinematics Solvers

Putting IK to use requires us to avoid several caveats such as singu-
larities or switching IK "branches". For example, we can induce a
singularity by traversing a shape like:

2
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Figure 3. Induced singularity

We can avoid these, if in our inverse kinematics function we incorpo-
rate a simple "angle-distance" check to our last position, allowing for
circular overflow. See the Code section for our IK solver.

2.5. Inverse Dynamics
2.5.1. Lagrangian

At a high-level, Newtonian mechanics breaks mechanical problems
down into forces while Lagrangian methods focuses on energy as its
fundamental unit of measure.

The definition of the Lagrangian for a dynamic system is as follows:

𝐿 = 𝐾 − 𝑃
𝐿 = (kinetic energy) − (potential energy)

Let us represent the angles, angular velocities, and angular accelera-
tions as vector functions:

𝜃(𝑡) = [𝜃1𝜃2
] (𝑡), �̇�(𝑡) = [�̇�1�̇�2

] (𝑡), �̈�(𝑡) = [𝜃1𝜃2
] (𝑡)

Thus, the kinetic energy depends on the pose and the joints’ velocities
while the potential energy (due to gravity) only depends on the pose.
And therefore, the Lagrangian is simply a function of the pose and
angles’ velocities as well:

𝐿(𝜃, �̇�) = 𝐾(𝜃, �̇�) − 𝑃(𝜃)

To solve for the Lagrangian, we start filling out the equation with
known quantities.

2.5.2. Kinetic Energy

To solve for the kinetic energy in the system, we sum the translational
and rotational energy for each of the linkage masses (assuming the
joints have negligible mass).

2.5.3. Kinematics–Translational Kinetic Energy

Let us find the center of mass (COM) as a function of the angles, then
take the derivative to get the velocity of each linkage in Cartesian
space as a function of the angles and angles’ velocities.
Let (𝑥𝑖 , 𝑦𝑖) represent the Cartesian location of the center of mass
of the 𝑖-th linkage. Using trigonometry/geometry we find that the

centers of mass are:

𝑥1 =
𝑙1
2 cos(𝜃1), 𝑦1 =

𝑙1
2 sin(𝜃1)

and

𝑥2 = 𝑙1 cos(𝜃1) +
𝑙2
2 cos(𝜃1 + 𝜃2), 𝑦2 = 𝑙1 sin(𝜃1) +

𝑙2
2 sin(𝜃1 + 𝜃2)

for links 1 and 2 respectively.

Now that we have the positions of each linkages’ center of mass as a
function of the angles, we can differentiate with respect to time to
get the velocities of each joint.

Since we want to differentiate a function of the form 𝑓(𝜃, 𝜃2) with
respect to time, we use the chain rule to expand it:

𝑑
𝑑𝑡 𝑓(𝜃, 𝜃2) =

𝜕𝑓
𝜕𝜃1

�̇�1 +
𝜕𝑓
𝜕𝜃2

�̇�2

Thus, the velocities of each center of mass become:

�̇�1 = − 𝑙12 sin(𝜃1) ⋅ �̇�1

�̇�1 =
𝑙1
2 cos(𝜃1) ⋅ �̇�1

and

�̇�2 = −𝑙1 sin(𝜃1) ⋅ �̇�1 −
𝑙2
2 sin(𝜃1 + 𝜃2) ⋅ (�̇�1 + �̇�2)

�̇�2 = 𝑙1 cos(𝜃1) ⋅ �̇�1 +
𝑙2
2 cos(𝜃1 + 𝜃2) ⋅ (�̇�1 + �̇�2)

Recall the equation for the kinetic energy of a moving object:

𝐾𝐸 = 1
2𝑚𝑣

2

To obtain the velocity-squared component for the first link (𝑣1) we
use the Pythagorean Theorem:

𝑣21 = �̇�1
2 + �̇�1

2

= ( − 𝑙1
2 sin(𝜃1) ⋅ �̇�1)

2

+ ( 𝑙12 cos(𝜃1) ⋅ �̇�1)
2

= 𝑙1
2

4
(
sin2(𝜃1) + cos2(𝜃1)

)
⋅ �̇�1

2

= 𝑙1
2

4 ⋅ �̇�1
2

Then, for the second link:

𝑣22 = �̇�2
2 + �̇�2

2

= ( − 𝑙1 sin(𝜃1) ⋅ �̇�1 −
𝑙2
2
sin(𝜃1 + 𝜃2) ⋅ (�̇�1 + �̇�2))

2

+ (𝑙1 cos(𝜃1) ⋅ �̇�1 +
𝑙2
2 cos(𝜃1 + 𝜃2) ⋅ (�̇�1 + �̇�2))

2

= 𝑙1
2�̇�1

2
+ 𝑙2

2

4

(
�̇�1 + �̇�2

)2

+ 2
(
− 𝑙1 sin(𝜃1) ⋅ �̇�1

)
⋅
(
− 𝑙2

2
sin(𝜃1 + 𝜃2) ⋅ (�̇�1 + �̇�2)

)

+ 2
(
𝑙1 cos(𝜃1) ⋅ �̇�1

)
⋅
( 𝑙2
2
cos(𝜃1 + 𝜃2) ⋅ (�̇�1 + �̇�2)

)

= 𝑙1
2�̇�1

2
+ 𝑙2

2

4 (�̇�1 + �̇�2)2 + 𝑙1𝑙2�̇�1(�̇�1 + �̇�2) ⋅ cos(𝜃2)

3
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2.5.4. Inertia–Rotational Kinetic Energy

Now we need the rotational kinetic energy of each linkage. We know
the rotational inertia of a uniform rod about it’s center of mass is:

𝐼𝑖 =
1
12𝑚𝑖𝑙𝑖

2

Recall also that the rotational energy is:

𝐾𝑟𝑜𝑡𝑖 =
1
2
𝐼𝑖𝜔𝑖

2

where the angular speeds are simply: 𝜔1 = �̇�1 and 𝜔2 = �̇�1 + �̇�2.

Therefore, the kinetic energy of the linkages is the sum of their trans-
lational and rotational energies:

𝐾(𝜃, �̇�) =
[ 1
2
𝑚1𝑣12 +

1
2
𝑚2𝑣22

]
+
[ 1
2
𝐼1�̇�1

2
+ 1

2
𝐼2(�̇�1 + �̇�2)2

]

2.6. Potential Energy

The potential energy in our system is gravitational potential energy:

𝑃𝐸 = 𝑚𝑔ℎ

Thus,

𝑃(𝜃) = 𝑚1𝑦1𝑔 +𝑚2𝑦2𝑔, 𝑔 ≈ 9.81𝑚∕𝑠2

= 𝑚1𝑔
𝑙1
2 sin(𝜃1) +𝑚2𝑔(𝑙1 sin(𝜃1) +

𝑙2
2 sin(𝜃1 + 𝜃2))

2.7. Euler-Lagrangian

The Euler-Lagrangian equation derivation is beyond the scope of this
class. It comes from a variational principle, e.g. Hamilton’s principle
of stationary action or D’Alembert’s principle of virtual work. In our
case, the generalized force conjugate to 𝜃𝑖 is the torque 𝜏𝑖 :

𝜏𝑖 =
𝑑
𝑑𝑡 (

𝜕𝐿
𝜕�̇�𝑖

) − 𝜕𝐿
𝜕𝜃𝑖

Let’s start by computing the partial derivative of the Lagrangian with
respect to the velocity �̇�𝑖 . We observe that the potential energy does
not depend on velocity, so we can simplify our calculations to be just:

𝜕𝐿
𝜕�̇�𝑖

= 𝜕𝐾
𝜕�̇�𝑖

By utilizing the concept of a manipulator inertia matrix (or "mass
matrix"), we can group/rewrite the kinetic energy into:

𝐾( [𝜃1𝜃2
] , [�̇�1�̇�2

] ) = 1
2

[
�̇�1 �̇�2

]
[𝑀11 𝑀21
𝑀12 𝑀22

] [�̇�1�̇�2
]

(𝑀12 = 𝑀21) due to symmetry

= 1
2
𝑀11�̇�1

2
+𝑀12�̇�1�̇�2 +

1
2
𝑀22�̇�2

2

Where the manipulator inertia matrix is defined as:

𝑀(𝜃) =
⎡
⎢
⎢
⎣

𝐼1 + 𝐼2 +
𝑚1 𝑙1

2

4
+𝑚2(𝑙1

2 + 𝑙2
2

4
+ 𝑙1𝑙2 cos(𝜃2)) 𝐼2 +𝑚2(

𝑙2
2

4
+ 𝑙1 𝑙2

2
cos(𝜃2))

𝐼2 +𝑚2(
𝑙2
2

4
+ 𝑙1 𝑙2

2
cos(𝜃2)) 𝐼2 +

𝑚2 𝑙2
2

4

⎤
⎥
⎥
⎦

Thus, explicitly we have:

𝜕𝐾
𝜕�̇�1

= 𝑀11�̇�1 +𝑀12(�̇�1 + �̇�2),
𝜕𝐾
𝜕�̇�2

= 𝑀12�̇�1 +𝑀22(�̇�1 + �̇�2)

or we can write simply:

𝜕𝐾
𝜕�̇�

= 𝜕𝐿
𝜕�̇�

= 𝑀([𝜃1𝜃2
]) [�̇�1�̇�2

] = 𝑀(𝜃)�̇�

Then, to take the derivative with respect to time, we get:

𝑑
𝑑𝑡 (

𝜕𝐿
𝜕�̇�𝑖

) = 𝑀(𝜃)�̈� + 𝐶(𝜃, �̇�)�̇�

where the term𝐶(𝜃, �̇�)⋅�̇� (orCoriolis–a velocity product term) satisfies
the following:

𝐶(𝜃, �̇�) ⋅ �̇� =
⎡
⎢
⎣

−𝑚2𝑙1
𝑙2
2
sin(𝜃1)�̇�2(�̇�1 + �̇�2)

𝑚2𝑙1
𝑙2
2
sin(𝜃2)�̇�1

2
⎤
⎥
⎦

Lastly, we compute the partial derivative of the Lagrangian with
respect to the angles 𝜕𝐿

𝜕𝜃𝑖
:

𝜕𝐿
𝜕𝜃𝑖

= 𝜕𝐾
𝜕𝜃𝑖

− 𝜕𝑃
𝜕𝜃𝑖

Since we already solved for the potential energy with:

𝑃 = 𝑚1𝑔
𝑙1
2 sin(𝜃1) +𝑚2𝑔(𝑙1 sin𝑃(𝜃1) +

𝑙2
2 sin(𝜃1 + 𝜃2))

Taking the partial derivative with respect to each angle, we obtain:

𝜕𝑃
𝜕𝜃1

= 𝑚1𝑔
𝑙1
2 cos(𝜃1) +𝑚2𝑔(𝑙1 cos(𝜃1) +

𝑙2
2 cos(𝜃1 + 𝜃2)),

𝜕𝑃
𝜕𝜃2

= 𝑚2𝑔
𝑙2
2 cos(𝜃1 + 𝜃2)

Then, for the kinetic energy term, we also find the partial derivative
with respect to each angle:

𝜕𝐾
𝜕𝜃1

= 0

Intuitively, this makes sense. The orientation of the first angle won’t
change the overall shape of the robotic arm in a way that influences
the kinetic energy, only the second joint will.

And the second partial derivative is:

𝜕𝐾
𝜕𝜃2

= −𝑚2𝑙1𝑙2
2 sin(𝜃2)�̇�1(�̇�1 + �̇�2) −𝑚2

𝑙2
2 𝑔 cos(𝜃1 + 𝜃2)

Thus, combining both of these terms yields:

𝜕𝐿
𝜕𝜃1

= 𝜕𝐾
𝜕𝜃1

− 𝜕𝑃
𝜕𝜃1

= (0) − (𝑚1𝑔
𝑙1
2 cos(𝜃1) +𝑚2𝑔(𝑙1 cos(𝜃1) +

𝑙2
2 cos(𝜃1 + 𝜃2)))

= −(𝑚1
𝑙1
2 +𝑚2𝑙1)𝑔 cos(𝜃1) −𝑚2

𝑙2
2 𝑔(cos(𝜃1 + 𝜃2),

𝜕𝐿
𝜕𝜃2

= 𝜕𝐾
𝜕𝜃2

− 𝜕𝑃
𝜕𝜃2

= ( − 𝑚2𝑙1𝑙2
2 sin(𝜃2)𝜃1(𝜃1 + 𝜃2)) − (𝑚2𝑔

𝑙2
2 cos(𝜃1 + 𝜃2))

From this step, we separate out the components with a gravity term
and define it as 𝐺(𝜃):

𝐺(𝜃) =
⎡
⎢
⎣

(𝑚1
𝑙1
2
+𝑚2𝑙1)𝑔 cos(𝜃1) +𝑚2

𝑙2
2
𝑔(cos(𝜃1 + 𝜃2)

𝑚2
𝑙2
2
𝑔 cos(𝜃1 + 𝜃2)

⎤
⎥
⎦

The "missing" component from the previous term is factored into the
Coriolis matrix.

Combine all the pieces and we are left with the following:

𝑑
𝑑𝑡 (

𝜕𝐿
𝜕�̇�𝑖

) − 𝜕𝐿
𝜕𝜃𝑖

= 𝑀(𝜃)�̈� + 𝐶(𝜃, �̇�)�̇� + 𝐺(𝜃) = 𝜏

𝑀(𝜃)�̈�: The torque required to accelerate the joints given the pose.

𝐶(𝜃, �̇�)�̇�: Extra torque needed due to the object already moving.

𝐺(𝜃): Torque to hold the arm up against gravity in the current pose.
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3. Simulation / Interpretation

Ultimately we wanted to create a model of a robotic arm that would
be able to follow an arbitrary motion path. In our example, we take a
looping path and break it up into even time steps (but our method
would work for any desired velocity/acceleration along the path).

We defined a circular/looping motion path and split it up evenly over
an amount of time. Our goal was to move the end-effector to each
point at the calculated time. Thus, we calculated the velocity needed
between every two points over their difference in time.

Figure 4. Our desired motion path.

We inputted the desired locations, time, and velocities to reach each
subsequent point into our inverse dynamics model, yielding us a
torque value between each segment of points.

Figure 5. The calculated torques necessary to drive the robotic arm.

As a bonus, we fed the torques back into the forward dynamics model
to simulate the robot:

�̈� = 𝑀(𝜃)−1(𝜏 − 𝐶(𝜃, �̇�)�̇� − 𝐺(𝜃))

Figure 6. Quickly diverges due to numerical approximation errors.

However, the system diverges very quickly and easily.

3.0.1. Limitations

Our forward dynamics simulation diverges due to a large number of
reasons including: numerical approximations, estimations we made
over the time step between points, starting velocity discrepancies,
etc. In the real world, we introduce an error term in the inverse
dynamics model to account for drag, friction of the motor, the
motor’s dynamics changing due to heat/wear, the measurements not
being precisely accurate, etc.

The next logical step would be to (in all modern control systems) is
to incorporate proportional/integral/derivative controls to influence
damping and rigidity of themotion and correct for small disturbances.
All to say, we have only begun to explore the complexities of robotic
control systems.
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Figure 7. (Animation only works in Firefox or Adobe Acrobat Reader)
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Figure 8. Sweeping over the mass of each linkage and visualizing the change in torque curves over the looping/circular motion path.
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4. Code

We include only the code to calculate the inverse dynamics of the
robotic arm as well as plot the desired path and output torques.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 scale = 0.79 # circle radius
4 radius = 0.2 # loop radius
5 freq = 13 # number of loops around circle
6 T_total = 60.0 # total motion time (s)
7 N = 2000 # number of time steps / path points
8 t = np.linspace(0, T_total, N) # time vector
9 # create the looping path along the circle
10

11 # generate uniform circular base path
12 phi = np.linspace(0, 2*np.pi, N) + np.pi/2 # rotate so

↪ the starting point is at the top
13

14 path_base = scale * np.column_stack((np.cos(phi), np.sin
↪ (phi)))

15

16 # add loops, evenly sampled along the base path
17 def tangent_normal_frame(path):
18 d = np.gradient(path, axis=0)
19 lengths = np.linalg.norm(d, axis=1, keepdims=True)
20 lengths[lengths == 0] = 1.0
21 Tvec = d / lengths
22 Nvec = np.column_stack((-Tvec[:,1], Tvec[:,0]))
23 return Tvec, Nvec
24

25 def add_loops(path, radius, freq):
26 N = len(path)
27 u = np.linspace(0, 1, N)
28 angles = 2 * np.pi * freq * u + np.pi/2 # fixes loop

↪ phase
29

30 Tvec, Nvec = tangent_normal_frame(path)
31 offsets = ( radius * np.cos(angles)[:,None] * Tvec +

↪ radius * np.sin(angles)[:,None] * Nvec )
32 return path + offsets
33

34 loopy_path = add_loops(path_base, radius, freq)

Code 1. Path generation

1 def inverse_kinematics_both(x, y, l1, l2):
2 r2 = x*x + y*y
3 cos2 = np.clip((r2 - l1*l1 - l2*l2) / (2*l1*l2), -1,

↪ 1)
4 th2_up = np.arccos(cos2)
5 th2_down = -th2_up
6 def th1(th2):
7 k1 = l1 + l2*np.cos(th2)
8 k2 = l2*np.sin(th2)
9 return np.arctan2(y, x) - np.arctan2(k2, k1)
10 return (th1(th2_up), th2_up), (th1(th2_down), th2

↪ _down)
11

12 def compute_joint_trajectory_both(path, l1, l2):
13 N = len(path)
14 thetas = np.zeros((N,2))
15 # seed with our preferred branch (elbow to the right

↪ )
16 thetas[0] = inverse_kinematics_both(*path[0], l1, l2

↪ )[0]
17

18 for i in range(1, N):
19 sol_up, sol_down = inverse_kinematics_both(*path

↪ [i], l1, l2)
20 # pick the one with smaller wrapped distance
21 if dist_cfg(sol_up, thetas[i-1]) <= dist_cfg(

↪ sol_down, thetas[i-1]):
22 thetas[i] = sol_up
23 else:
24 thetas[i] = sol_down
25 return thetas
26

27 # smallest signed difference between angles

28 def wrap_delta(a, b):
29 d = a - b
30 # wrap into [\pi, +\pi)
31 return (d + np.pi) % (2*np.pi) - np.pi
32

33 # euclidean distance in terms of joints (with wrapping)
34 def dist_cfg(cfg1, cfg2):
35 d1 = wrap_delta(cfg1[0], cfg2[0])
36 d2 = wrap_delta(cfg1[1], cfg2[1])
37 return np.hypot(d1, d2)
38

39 def finite_diff_angles(arr, t):
40 dt = t[1] - t[0]
41 delta = wrap_delta(arr[1:], arr[:-1])
42 diffs = delta / dt
43 t_mid = (t[:-1] + t[1:]) / 2
44 return t_mid, diffs

Code 2. Applied kinematics and basic solver

1 # robot configuration
2 params = {
3 ’l1’:0.5, ’l2’:0.5,
4 ’m1’:1.0, ’m2’:10.0, # top link heavier for greater

↪ effect on torque plots
5 ’I1’:(1/12)*1.0**2,
6 ’I2’:(1/12)*10.0**2,
7 ’g’: 9.81
8 }
9

10 thetas = compute_joint_trajectory_both(loopy_path,
↪ params[’l1’], params[’l2’])

11 t_v, vel = finite_diff_angles(thetas, t)
12 t_a, accel = finite_diff_angles(vel, t_v)
13

14 torques = []
15 for (th1, th2), (d1, d2), (dd1, dd2), ti in zip(
16 thetas[1:-1], vel, accel, t_a):
17 M = M_matrix(th2,
18 params[’l1’], params[’l2’],
19 params[’m1’], params[’m2’],
20 params[’I1’], params[’I2’])
21 C = C_matrix(th2, d1, d2,
22 params[’l1’], params[’l2’],
23 params[’m2’])
24 Gv = G_vector(th1, th2,
25 params[’l1’], params[’l2’],
26 params[’m1’], params[’m2’],
27 params[’g’])
28 tau = M.dot([dd1, dd2]) + C.dot([d1, d2]) + Gv
29 torques.append((ti, tau[0], tau[1]))
30

31 times, tau1, tau2 = map(np.array, zip(*torques))

Code 3. Creating inputs for ID to output torques

1 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(4, 7),
↪ gridspec_kw={’height_ratios’: [3, 2]})

2

3 # top plot is the looping path and the circular reach of
↪ the arm

4 ax1.plot(loopy_path[:,0], loopy_path[:,1], label="
↪ Desired Path")

5 unit_circ = np.column_stack((np.cos(phi), np.sin(phi)))
6 ax1.plot(unit_circ[:,0], unit_circ[:,1], ’--’, label="

↪ Arm Reach")
7 ax1.plot(loopy_path[0,0], loopy_path[0,1], ’go’, label

↪ =’Start’)
8

9 ax1.set_aspect(’equal’, ’box’)
10 ax1.set_title("Motion Plan")
11 ax1.legend()
12

13 # top plot is torques
14 ax2.plot(times, tau1, label=r"$\tau_1$")
15 ax2.plot(times, tau2, label=r"$\tau_2$")
16 ax2.set_xlabel("Time (s)")
17 ax2.set_ylabel("Torque (Nm)")
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18 ax2.set_title(r"Joint Torques ($\tau_1, \tau_2$)")
19 ax2.set_ylim(-150, 200)
20 ax2.legend()
21

22 plt.tight_layout()
23 plt.show()

Code 4. Generating the plots showing desired path and calculated torques

1 def M_matrix(th2, l1, l2, m1, m2, I1, I2):
2 M11 = I1 + I2 + (m1*(l1*l1))/4 + m2*((l1*l1) + (l2*l

↪ 2)/4 + l1*l2*np.cos(th2))
3 M12 = I2 + (m2*(l2*l2))/4 + ((l1*l2)/2)*np.cos(th2))
4 M22 = I2 + (m2*(l2*l2))/4
5 return np.array([[M11, M12],
6 [M12, M22]])

Code 5. Function for the manipulator inertia matrix (mass matrix)

1 def C_matrix(th2, th1_dot, th2_dot, l1, l2, m2):
2 h = -m2 * l1 * (l2/2) * np.sin(th2)
3 return np.array([[h*th2_dot, h*(th1_dot+th2_dot)],
4 [-h*th1_dot, 0.0]])

Code 6. Function for the Coriolis matrix. Note: it’s a slightly different
variation from the one we derived since this one is more commonly used in
computation by toolkits/libraries/etc.

1 def G_vector(th1, th2, l1, l2, m1, m2, g=9.81):
2 g1 = (((m1*l1)/2 + m2*l1)*g*np.cos(th1)
3 + m2*(l2/2)*g*np.cos(th1+th2))
4 g2 = m2*l2/2*g*np.cos(th1+th2)
5 return np.array([g1, g2])

Code 7. Function for the gravity vector.
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